使用数据分析工具监控广告联盟收入需结合数据采集、清洗、可视化及预警机制,以下为分步骤实操教程,涵盖主流工具(如Google Analytics 4、Excel/Power BI、广告联盟原生后台)及关键指标分析方法:
requests库调用API,示例代码:python
1
import requests
2
import pandas as pd
3
4
url = "https://adsense.googleapis.com/v1.4/accounts/{account_id}/reports"
5
headers = {"Authorization": "Bearer YOUR_ACCESS_TOKEN"}
6
params = {
7
"startDate": "2024-01-01",
8
"endDate": "2024-01-31",
9
"metrics": "ESTIMATED_EARNINGS,IMPRESSIONS,CLICKS",
10
"dimensions": "DATE,COUNTRY_CODE"
11
}
12
response = requests.get(url, headers=headers, params=params)
13
data = pd.DataFrame(response.json()["rows"])
VLOOKUP或Power Query合并不同广告联盟的数据表。总收入 = SUM('Table'[ESTIMATED_EARNINGS])平均eCPM = DIVIDE(SUM('Table'[ESTIMATED_EARNINGS]), SUM('Table'[IMPRESSIONS]))*1000python
1
import pandas as pd
2
import smtplib
3
from email.mime.text import MIMEText
4
5
# 读取数据
6
data = pd.read_csv("ad_revenue.csv")
7
avg_revenue = data["revenue"].mean()
8
today_revenue = data.iloc[-1]["revenue"]
9
10
# 触发预警
11
if today_revenue < avg_revenue * 0.5:
12
msg = MIMEText(f"预警:今日收入{today_revenue}元,低于日均值50%!")
13
msg["Subject"] = "广告收入异常预警"
14
msg["From"] = "your_email@example.com"
15
msg["To"] = "team@example.com"
16
smtp = smtplib.SMTP("smtp.example.com")
17
smtp.send_message(msg)
|
如何用数据分析工具监控广告联盟收入?实操教程
发布时间:2025-10-28 20:04:40
使用数据分析工具监控广告联盟收入需结合数据采集、清洗、可视化及预警机制,以下为分步骤实操教程,涵盖主流工具(如Google Analytics 4、Excel/Power BI、广告联盟原生后台)及关键指标分析方法: 一、数据采集:整合多平台收入数据方法1:广告联盟原生后台导出
方法2:API自动采集(推荐)
python
1
import requests
2
import pandas as pd
3
4
url = "https://adsense.googleapis.com/v1.4/accounts/{account_id}/reports"
5
headers = {"Authorization": "Bearer YOUR_ACCESS_TOKEN"}
6
params = {
7
"startDate": "2024-01-01",
8
"endDate": "2024-01-31",
9
"metrics": "ESTIMATED_EARNINGS,IMPRESSIONS,CLICKS",
10
"dimensions": "DATE,COUNTRY_CODE"
11
}
12
response = requests.get(url, headers=headers, params=params)
13
data = pd.DataFrame(response.json()["rows"])
方法3:第三方工具同步
二、数据清洗与预处理
三、数据可视化与核心指标分析工具选择:
关键仪表盘设计:
示例(Power BI操作步骤):
四、异常检测与预警机制方法1:Excel条件格式
方法2:Power BI预警
方法3:Python自动化脚本python
1
import pandas as pd
2
import smtplib
3
from email.mime.text import MIMEText
4
5
# 读取数据
6
data = pd.read_csv("ad_revenue.csv")
7
avg_revenue = data["revenue"].mean()
8
today_revenue = data.iloc[-1]["revenue"]
9
10
# 触发预警
11
if today_revenue < avg_revenue * 0.5:
12
msg = MIMEText(f"预警:今日收入{today_revenue}元,低于日均值50%!")
13
msg["Subject"] = "广告收入异常预警"
14
msg["From"] = "your_email@example.com"
15
msg["To"] = "team@example.com"
16
smtp = smtplib.SMTP("smtp.example.com")
17
smtp.send_message(msg)
五、优化建议与行动项
六、工具推荐清单 |
|